2009年5月17日 星期日

三角函數族的正交性

所謂的兩個不同向量正交是指它們的內積為0,這也就意味著這兩個向量之間沒有任何相關性,例如,在三維歐氏空間中,互相垂直的向量之間是正交的。事實上,正交是垂直在數學上的的一種抽象化和一般化。一組n個互相正交的向量必然是線形無關的,所以必然可以張成一個n維空間,也就是說,空間中的任何一個向量可以用它們來線形表出。三角函數族的正交性用公式表示出來就是:

\int _{0}^{2\pi}\sin (nx)\cos (mx) \,dx=0;
\int _{0}^{2\pi}\sin (nx)\sin (mx) \,dx=0;(m\ne n)
\int _{0}^{2\pi}\cos (nx)\cos (mx) \,dx=0;(m\ne n)
\int _{0}^{2\pi}\sin (nx)\sin (nx) \,dx=\pi;
\int _{0}^{2\pi}\cos (nx)\cos (nx) \,dx=\pi;

沒有留言: